AS

# Mathematics 

MPC2 - Pure Core 2
Mark scheme

6360
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
## Key to mark scheme abbreviations

| M | mark is for method |
| :---: | :---: |
| m or dM | mark is dependent on one or more M marks and is for method |
| A | mark is dependent on M or m marks and is for accuracy |
| B | mark is independent of $M$ or $m$ marks and is for method and accuracy |
| E | mark is for explanation |
| vor ft or F | follow through from previous incorrect result |
| CAO | correct answer only |
| CSO | correct solution only |
| AWFW | anything which falls within |
| AWRT | anything which rounds to |
| ACF | any correct form |
| AG | answer given |
| SC | special case |
| OE | or equivalent |
| A2,1 | 2 or 1 (or 0) accuracy marks |
| $-x \mathrm{EE}$ | deduct $x$ marks for each error |
| NMS | no method shown |
| PI | possibly implied |
| SCA | substantially correct approach |
| c | candidate |
| sf | significant figure(s) |
| dp | decimal place(s) |

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.


| Q2 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\rangle^{y \uparrow}$ | B1 |  | Only one $y$-intercept, marked as 1 or coordinates $(0,1)$ stated or ' $y=1$ when $x=0$, |
|  |  | B1 | 2 | Correct graph having no other 'crossing point' on either axis. |
| (b) | $x \log 0.2=\log 4$ | M1 |  | OE eg ( $x=$ ) $\log _{0.2} 4$ |
|  | $(x=)-0.861(35 . . .)=-0.861 \text { (to 3sf) }$ | A1 | 2 | Condone > 3sf, rounded or truncated. If use of logarithms not explicitly seen then score $0 / 2$ |
| (c) | Reflection in the $y$-axis. | E1 | 1 | OE <br> E0 if more than one transformation |
|  | Total |  | 5 |  |
| (a) <br> (b) | For large positive $x$-values, graph in $1^{\text {st }}$ quadrant, if not very close to the $x$-axis, must be approaching the horizontal which is clearly closer to the $x$-axis than through c's $y$-intercept <br> OEs eg $-x \log 5=\log 4 ; x \log 2=\log 4+x \log 10 ; x\left(1-\log _{2} 10\right)=2 ;(x-2) \log 2=x \log 10$ |  |  |  |



| Q4 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\left[\mathrm{S}_{21}=\right] \frac{21}{2}[2 a+(21-1) d]$ | M1 | 3 | $\frac{21}{2}[2 a+(21-1) d]$ OE |
|  | $\frac{21}{2}[2 a+20 d]=168$ | m1 |  | Forming correct eqn |
|  | $21(a+10 d)=168 \Rightarrow a+10 d=8$ | A1 |  | AG $a+10 d=8$ convincingly obtained with intermediate step shown eg $21(2 a+20 d)=168 \times 2 ; 2 a+20 d=8 \times 2$ |
| (b) (i) | $a+d+a+2 d=50 \quad(2 a+3 d=50)$ | M1 |  | $a+d+a+2 d=50$ OE in terms of $a$ and $d$ |
|  | $2(8-10 d)+3 d=50$ | m1 |  | Solving $a+10 d=8$ OE simultaneously with c's $2 a+3 d=50$ OE as far as correctly eliminating either $a$ or $d$. PI by correct values for both $d$ and either $a$ or |
|  | $d=-2 ; a=28$ or $12^{\text {th }}$ term $=8+d$ | A1 |  | $d=-2$ and either $a=28$ or $8+d$ seen or used in part (b)(i). |
|  | $\left(u_{12}=\right) 6$ | A1 | 4 | NMS scores 4/4 unless FIW |
| (b)(ii) | $\begin{aligned} \sum_{n=4}^{21} & u_{n}=\sum_{n=1}^{21} u_{n}-\sum_{n=1}^{3} u_{n} \\ & =168-(a+50) \text { or } 168-1.5(2 a+2 d) \\ & =90 \end{aligned}$ | M1 |  | $\sum_{n=4}^{21} u_{n}=\sum_{n=1}^{21} u_{n}-\sum_{n=1}^{3} u_{n} \quad$ OE eg $S_{21}-S_{3}$ <br> stated or used |
|  |  | A1F |  | OE. If numerical form only then ft on c's non-zero values for $a$ and $d$. |
|  |  | A1 | 3 | 90 NMS 90 scores $3 / 3$ unless FIW. SC If $0 / 3$ award 1 mark for answer 68 |
|  | Altn. $A=a+3 d, N=18$, $\sum_{n=4}^{21} u_{n}=\frac{18}{2}[2(a+3 d)+(18-1) d]$ | (M1) |  | OE Seen or used. \{OEs include $9(2 a+23 d)=18 a+207 d\}$ |
|  | $=\frac{18}{2}[2(a+3 \times(-2))+(18-1)(-2)]$ | (A1F) |  | Ft on c's $d \neq 0$ value in (b)(i); if expression is entirely numerical, also ft on c's $a \neq 0$ value |
|  | $\sum_{n=4}^{21} u_{n}=90$ | (A1) | (3) | 90 |
|  | Total |  | 10 |  |




| Q7 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\begin{aligned} & p=-10 ; \\ & q=40 ; \\ & r=-80 \end{aligned}$ | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | 3 | Accept correct embedded values for $p, q$ and $r$ within the expansion |
| (b) | $(2+x)^{7}=\ldots \ldots \ldots+m x^{5}+n x^{6}+x^{7}$ | M1 |  | Attempting to find at least two of $x^{5}$ term, $x^{6}$ term, $x^{7}$ term in the expansion of $(2+x)^{7}$ |
|  | $m=84, n=14$ | A1 |  | Either correct. (M1 must be scored). PI by later correct work |
|  | Coefficients of $x^{10}$ terms in expansion of $(1-2 x)^{5}(2+x)^{7}$ are $-32 m+80 n+r$ | m1 |  | Identifying at least two of the three products $-32 m, 80 n, r$ that give $x^{10}$ terms |
|  | $\begin{aligned} & \text { Coeff. of } x^{10}=(-32)(84)+(80)(14)+r \\ & =-2688+1120+r=-1568+r \end{aligned}$ | A1F |  | Only ft c 's value of $r$ in (a). If not shown in any of these forms, can be implied by final answer which matches correct evaluation of ( $-1568+c$ 's $r$ ) |
|  | Coeff. of $x^{10}=-1648$ | A1 | 5 | -1648 or left as ' $-1648 x^{10}$. <br> Ignore other powers of $x$ terms |
|  | Total |  | 8 |  |
|  |  |  |  |  |

\begin{tabular}{|c|c|c|c|c|}
\hline Q8 \& Solution \& Mark \& Total \& Comment \\
\hline (a) (i)
(a)(ii) \& \[
\begin{aligned}
\& \frac{4 \sin x}{\cos x}+\frac{5 \cos x}{\cos x}=0 ; 4 \tan x+5=0 \\
\& \tan x=-\frac{5}{4} \quad(=-1.25) \\
\& \tan x=1, \tan x=-1.25 \\
\& (x=) 45^{\circ}, 225^{\circ}, 129^{\circ}, 309^{\circ}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
B1F \\
B2, 1
\end{tabular} \& 2

3 \& | $\frac{\sin x}{\cos x}=\tan x \text { clearly used to obtain a }$ |
| :--- |
| linear equation in $\tan x$. $-1.25 \mathrm{OE}$ |
| NMS mark as B2 or B0 |
| 1 and c's answer to (a)(i) vals for tan ( $x$ ) PI by a correct angle for both tan values B2 45, 225, AWRT 129, AWRT 309 If not $\mathbf{B 2}$ award $\mathbf{B 1}$ for at least two correct. If more than four values in given interval, deduct 1 mark for each extra to min of BO. Ignore values outside $0^{\circ} \leq x \leq 360^{\circ}$ | <br>

\hline (b) \& | $\begin{aligned} & \frac{16+9 \sin ^{2} \theta}{5-3 \cos \theta}=\frac{16+9\left(1-\cos ^{2} \theta\right)}{5-3 \cos \theta} \\ & =\frac{(5-3 \cos \theta)(5+3 \cos \theta)}{5-3 \cos \theta} \\ & =5+3 \cos \theta \end{aligned}$ |
| :--- |
| Least possible value is 2 and occurs at $\theta=\pi$ | \& | M1 |
| :--- |
| A1 |
| A1 |
| B1F | \& 4 \& | Replacing $\sin ^{2} \theta$ by $1-\cos ^{2} \theta$ in given expression or replacing $\cos ^{2} \theta$ by $1-\sin ^{2} \theta$ in term $\pm 3 q \cos ^{2} \theta$. |
| :--- |
| Or any two of $5 p-3 q=16,5 q-3 p=0,3 q=9$ |
| CSO. Or $q=3, p=5$ and checking remaining eqn is satisfied. |
| Ft on c's $p$ and $q$ non zero values. |
| $\{$ If $q>0$, least val $=p-q \quad \theta=\pi\}$ |
| \{If $q<0$, least val $=p+q$ at $\theta=0\}$ |
| Ignore values of $\theta$ outside given interval | <br>

\hline \& Total \& \& 9 \& <br>
\hline (a)(i)

(b) \& \multicolumn{4}{|l|}{| $\tan x=-1.25$ OE with no errors seen scores 2 marks. Methods involving squaring and $\tan x \neq-1.25$ OE, must give reasons for discounting certain solns before M1A0 scored |
| :--- |
| Multiplying the numerator and denominator of the given expression by $5+3 \cos \theta$ does not score until the correct relevant identity has been used (M1); the $1^{\text {st }} \mathrm{A} 1$ will then be awarded when the rational expression has been written in a correct form with terms which can be cancelled legitimately e.g. $\frac{\left(16+9 \sin ^{2} \theta\right)(5+3 \cos \theta)}{\left(16+9 \sin ^{2} \theta\right)}$ |} <br>

\hline
\end{tabular}




[^0]:    Copyright © 2016 AQA and its licensors. All rights reserved.
    AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

